
mNFwTJ3wz9
Everyone except me is a Fed ﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽﷽
★★★★★
- Joined
- Nov 17, 2019
- Posts
- 5,526
- Online
- 72d 2h 46m
Fuck I'm going to start using proper coordinate systems, I don't know why the fucked it so badly.
So Let us assume an arbitrary triangle(with integer sides and non zero angles)
so we have (0,0), (x0,0) and (x1,y1)
x0 > 0 for convenience
and a point (x2,y2), such that it's distance from (0,0) is large
Case 1 -
lets say x2 > x0 WLOG
so both (x2^2 + y2^2)^0.5 and ((x2-x0)^2 + y2^2)^0.5 are integers
but this puts a bound on how high (x2^2 + y2^2)^0.5 can be, because the minimum difference between these distances has to be 1.
(x2^2 + y2^2)^0.5 >= ((x2-x0)^2 + y2^2)^0.5 + 1
squaring both sides :
(x2^2 + y2^2) >= ( (x2-x0)^2 + y2^2) + 1 + 2 * ( (x2-x0)^2 + y2^2)^0.5
x2^2 + y2^2 >= x2^2 - 2*x2*x0 + x0^2 + y2^2 +1 + 2 * ( (x2-x0)^2 + y2^2)^0.5
2*x2*x0 - x0^2 - 1 >= 2 * ( (x2-x0)^2 + y2^2)^0.5
squaring both sides again
1 + 2*x0^2 + x0^4 - 4*x0*x2 - 4 x0^3*x2 + 4*x0^2*x2^2 >= 4 * (y2^2 + x2^2 + x0^2 - 2*x0*x2)
oh fuck this sucks
x0^4 - 4*x0^3*x2 + 4*x0^2*x2^2 - 2*x0^2 + 4*x0*x2 - 4*x2^2 - 4*y2^2 + 1 >= 0
No wait, x0^2 - 1 can be taken common
(x0^2 - 1)*(x0 - 2*x2 - 1)*(x0 - 2*x2 + 1) >= 4 y2^2
FUUUUUCK YEAAHHH
We can now bound y2^2
So Let us assume an arbitrary triangle(with integer sides and non zero angles)
so we have (0,0), (x0,0) and (x1,y1)
x0 > 0 for convenience
and a point (x2,y2), such that it's distance from (0,0) is large
Case 1 -
lets say x2 > x0 WLOG
so both (x2^2 + y2^2)^0.5 and ((x2-x0)^2 + y2^2)^0.5 are integers
but this puts a bound on how high (x2^2 + y2^2)^0.5 can be, because the minimum difference between these distances has to be 1.
(x2^2 + y2^2)^0.5 >= ((x2-x0)^2 + y2^2)^0.5 + 1
squaring both sides :
(x2^2 + y2^2) >= ( (x2-x0)^2 + y2^2) + 1 + 2 * ( (x2-x0)^2 + y2^2)^0.5
x2^2 + y2^2 >= x2^2 - 2*x2*x0 + x0^2 + y2^2 +1 + 2 * ( (x2-x0)^2 + y2^2)^0.5
2*x2*x0 - x0^2 - 1 >= 2 * ( (x2-x0)^2 + y2^2)^0.5
squaring both sides again
1 + 2*x0^2 + x0^4 - 4*x0*x2 - 4 x0^3*x2 + 4*x0^2*x2^2 >= 4 * (y2^2 + x2^2 + x0^2 - 2*x0*x2)
oh fuck this sucks
x0^4 - 4*x0^3*x2 + 4*x0^2*x2^2 - 2*x0^2 + 4*x0*x2 - 4*x2^2 - 4*y2^2 + 1 >= 0
No wait, x0^2 - 1 can be taken common
(x0^2 - 1)*(x0 - 2*x2 - 1)*(x0 - 2*x2 + 1) >= 4 y2^2
FUUUUUCK YEAAHHH
We can now bound y2^2
Last edited: